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The theory of fatigue-crack growth, based on a synthesis of fracture mechanics and continuum mechanics of microdamage 
accumulation, is appliexl to the problem of crack growth under cyclic loading, taking into account the plastic deformations in 
the tip zones. The moclel of a thin plastic zone, which is a region of considerable plastic deformations at the crack tip, is 
supplemented by taking into account the effect of microdamage on the value of the speeitie fracture work and the limit stresses 
in the tip zone. Governing equations which describe fatigue-crack growth taking these factors into account are derived. The effect 
of the material characteristics and the load parameters on the growth rate and the distribution of microdamage in the tip zone 
and on its extensions is investigated by a computational experiment. Particular attention is given to the initial stage when crack 
growth may occur abruptly and the growth rate depends substantially on the initial conditions. © 1997 Elsevier Science Ltd. All 
rights reserved. 

Crack growth under cyclic loading is often accompanied by plastic deformation. This is observed, in 
particular, at high cyclic stress levels, when fracture is preceded by a relatively low number of cycles 
(usually of the order of 103-104). In such cases we speak of low-cycle fatigue. Plastic deformations may 
also play a considerable role for short cracks, the length of which is comparable with the dimensions 
of the plastic-deformation zone. A review of the experimental evidence and mathematical models used 
to describe these phenomena can be found in [1-7]. 

The mechanics o:f fatigue-crack growth is, essentially, a further development of fracture mechanics, 
which mainly considers the behaviour of cracked bodies under monotonically increasing loads. Fatigue- 
crack growth is a result of the interaction of two mechanisms: the accumulation of scattered damage 
in the material as a result of cyclic stresses, and the overall energy balance in the system of the cracked 
body with cracks and the load or the loading device. The synthesis of fracture mechanics and damage 
accumulation mechanics enables fatigue fracture and allied phenomena to be described quantitatively. 

In non-linear fracture mechanics the model of a thin plastic zone [3s 5, 7] is one of the simplest, in 
this model all plastic effects are concentrated in tip zones of finite length that are infinitesimally thin. 
The limit fracture stresses within the tip zones are usually taken as a constant of the material, like the 
yield point for tensJile stress o~, sometimes identifying the limit stress with o r or "J(3)o Outside the 
plastic zone the material ts assumed to be hnearly elasttc. The length of the plastic zone ts determined 
from the condition for removing singularities when joined with the elastic solution. Nevertheless, the 
plastic regions, determined from the theory of plastic flow, have dimensions of the same order as for 
the extension of the crack, and in the transverse direction [5]. Despite this rough scheme, the model 
of a thin plastic zone give satisfactory quantitative results in the case of quasi-brittle fracture. This is 
the reason it is widely used in non-linear fracture mechanics, also for predicting subcritical crack growth 
under cyclic loading, when interpreting experimental data and when estimating the crack resistance of 
structural materials II1, 2, 5]. A number of extensions of the thin plastic zone model have been proposed, 
including taking plastic hardening and softening into account [2]. 

Under cyclic loading microdamage occurs in the tip zones, i.e. microcracks and micropores, which 
produce a change in the macroscopic properties of the material. A reduction in the specific fracture 
work due to the effect of microdamage is the main mechanism for the motion of the fatigue crack 
front. An increase in the specific fracture work due to the screening effect of micropores, and of defor- 
mation hardening and deformation (acquired) anisotropy has also been observed. Another group of 
defects is the change in deformative properties, which can manifest themselves both in the form 
of hardening and softening. In particular, a reduction in the material stiffness leads to a reduction in 
the stresses in the neighbourhood of the crack tips, which produces a change in the rate of microdamage 
accumulation [10]. As a result the value of the work which must be expanded in advancing the fatigue 
crack is increased. 
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To describe fatigue-~rack growth, it is necessary to supplement the plastic-zone model by relations 
which describe the microdamage accumulation, and also the effect of this damage on the mechanical 
properties of the material. This was done for the first time in a quasi-steady approximation [11], where, 
when a plastic zone is developing, a power relationship was obtained for the fatigue-crack growth rate 
as a function of the stress intensity factor with an exponent close to two. A more detailed analysis was 
carried out in [12] using a numerical method. A threshold-power relationship was used in this case to 
describe the microdamage accumulation, and the effect of microdamage on the specific fracture work 
was taken into account; the effect of microdamage on the deformation characteristics of the material 
was ignored. In particular, it was assumed that the limit stress remains constant over the whole tip zone. 
In this paper we remove this constraint, which enables us to describe more fully the phenomena and 
processes which accompany fatigue-crack growth. 

1. Following the approach described earlier [8], we will treat the system consisting of the cracked 
body and the load as a mechanical system with unilateral constraints. For simplicity, we will consider 
a single-parameter crack, whose dimensions are specified by the length parameter a, for example, the 
half-length o f  the crack in the Griffith problem (Fig. 1). We will assume the crack to be irreversible, 
i.e. we will assume that the variation in its parameter ~a i> 0. For a system with unilateral constraints 
the equilibrium condition has the form 

sa o (1.1) 

As it applies to quasi-static problems in fracture mechanics, all the mixed states of equilibrium can 
be compared in the usual sense (with respect to the generalized Lagrange coordinates). Hence, when 
investigating the stability of a system consisting of the cracked body and the load, condition (1.1) can 
be replaced by the following 

8oA ~ 0 (1.2) 

The subscript on 8c, A denotes that the perturbed state differs solely in the displacements which 
describe the crack (these displacements are called [8] the generalized Griffith coordinates). We will 
represent the left-hand side of (1.2) in the form 

8c, A = 8c, A, + 8c_,Ai + 8c, A I (1.3) 

where 8c_,A, and 8c_/li are the virtual works of the external and internal forces, respectively, and ~c_,Af is 
the virtual fracture work. We can write the right-hand side of (1.3) in terms of generalized forces as follows: 

8aA e + 8~A i = OSa, 8~A I = -r'Sa (1.4) 

The identities (1.4) introduce two types of generalized forces: a generalized driving force G and a 
generalized resistance force F. In linear fracture mechanics the generalized force G corresponds to the 
intensity of the released energy G or the J-integral, while the generalized resistance force represents 
the corresponding crack-resistance characteristics Gc or Jc [5, 7]. 

y s(x) 
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D 

Fig. 1. 
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In single-parameter problems, condition (1.2) takes the form 

G ~ F (1.5) 

Depending on the signs in (1.2) and (1.5) we will distinguish the following states of the system 
consisting of the cracked body and the load. If for any 6a > 0 we have fiA < 0, i.e. G < F, the state is 
said to be a subequilibrium state. This state is obviously stable. If ~a = 0, i .e.  G = F, the state is said 
to be an equilibrium state (with respect to the generalized Griflith coordinates). This state can be stable 
or neutral depending on the behaviour of the difference G - F  in the neighbourhood of the equilibrium 
state investigated. In particular, it is stable when aG/~ < aF/aa. Finally, when ~A > 0, i.e. G = F, the 
state is unstable; we will call this a non-equilibrium state. 

Conclusions regarding stability (instability) in this case are almost obvious from the physical point 
of  view; a rigorous analysis, however, has only been carried out as it applies to potential systems [13]. 
Nevertheless, it has been shown in [8, 14, 15], that relations (1.2) and (1.5) do not contradict the generally 
accepted ideas of fracture mechanics, and also experimental facts. These relations have been used 
repeatedly [5, 7] kl implicit form or in the form of energy-balance relations. Relations of the form (1.2) 
and (1.5) have been applied to fatigue cracks [10-12, 15, 16], and also to problems of dynamic crack 
propagation (in conjunction with d'Alembert's principle) [17]. 

2. Consider a cleavage crack in an unbounded elastoplastic medium under plane stress (Fig. 1). We 
will denote the half-length of the crack by a, the length of the plastic zone for monotonic loading by 
k, and the stress applied at infinity by o**. We will denote the stress % (x, y) along the extension of the 
crack I x I ~ a, y = 0 simply by oy (x), and we will denote the limit stress % (x, 0) in the plastic zone a 

Ixl ~ a  + L by s(x). 
To determine the stress, deformation and displacement fields in a cracked body for an arbitrary stress 

distribution s(x) in the tip zones it is best to use available analytic solutions for the ease s = const. These 
solutions have been obtained by a number of investigators [3, 4]. Different analytical methods lead to 
identical though superficially different results. We will use those results, which are more convenient 
for further calculations. 

The stress fields in a cracked body can be conveniently represented using the complex Westergard 
potential Z(z) [6]. Then 

a~ = R e Z - y l m Z ' ,  or  = R e Z + y l m Z '  (2.1) 

xxy=-yReZ', Z'=-dZIdz, z=x+iy 

For two single fi>rces applied normal to the crack edges at the point x = ~(I ~ I < a), we have 

Z(Z)= (a 2 _~2)~ (2.2) 
g ( Z -  ~)(Z 2 - a 2 )  ,~ 

In the classical problem of a thin tip zone, we will assume that the critical normal stress % = 0 when 
I ~ I < a and oy = s = const when a ~< I ~ I ~< a + ~. -- b. The application of potential (2.2) to this problem 
yields 

z [ ] 2 s  a 2s r/|al(z~zb_.2)]~] 
Z(z)= [.a- arccos j+ arctg Z - ~ - a  2 ) J 

(z  2 _ b 2))~ LL 
(2.3) 

Suppose s(x) is a differentiable function over the whole region a ~< I x I ~< b. Then, taking (2.3) into 
account and also tlae condition for the stresses to be non-singular when x = b, y = 0, which gives an 
equation for determining the length of the boundary zone ~. (this equation is a generalization of a well- 
known formula [4, 7]) 

s(a) arccos + arccos -- 
a a aq 2 

(2.4) 
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we obtain 

[a((z2-b2)~ ~] 2b, ds(~) . [¢((z2-b2)a 
Z(z)= 2s(a) arctg z b ' ~ - a  ) J ~a d~j L Z(, b 

For the displacements v (x, 0) at the crack edges and extension of the crack within the tip zone, it is 
more convenient to start from the formula [3] 

u(x, O)=cs[(x-a)F(b, x, a)-(x+a)F(a, x,-a)] (2.6) 

where c = 1/(r~E) for a plane-stressed state and c = (1 - v2)/0r~) for plane deformation (E is Young's 
modulus and v is Poisson's ratio). The kernel has the form 

r(b, x, ~) = In b2 - x~- [(b ~ -- x 2)(b 2 - ~)1'~ 

b ~ - x~ + [(b 2 - x 2)(b ~ - ~)]~ 
(2.7) 

I fs  = s(x), then instead of  (2.6) we arrive at a formula which is similar in structure to (2.5) 

v(x, O)=cs(a)[(x-a)F(b, x, a)-(x+a)F(a, x,-a)]+ 

b ds(~) x (2.8) +c~ ~ 1 (  -~ )F(b ,  x, ~ ) - ( x + [ ) F ( a ,  x , - ~ ) ] a ~  
a 

3. Suppose the stresses o . ,  given at infinity, very cyclicly with time. We will denote the number of  
cycles, taken as the independent variable, by N; o ,  m= (N) and N; o .  m~ (N) denote the extremal stresses 
of the cycle. In addition, we introduce the range of the stresses within a cycle Ao** (N) = o ~  ax (N) - 
o .  H (b 0 and the symmetry characteristic of the cycle R(N) = o ~  ~ (N)/o** ma~ (N). In order not to introduce 
complications due to the effect of  crack closure [18], we will assume that the specified nominal stresses 
remain tensile stresses within a cycle. 

We will take condition (1.5) for a fatigue crack with length parameter a(N) in the form 

GtoT(N), a(N)I~Ft¥(N), a(N)] (3.1) 

where ¥(N) is a measure of  the mierodamage at the crack tip Ix I = a. Here we assume that the generaliz- 
ed driving force G is independent of the microdamage, while the generalized resistance force F is 
independent of the applied stresses. The introduction of  o .  max (N) into the left-hand side of (3.1) denotes 
that the stability condition is verified at the instant when the cleavage stresses reach a maximum within 
each cycle. 

We will express the generalized force G in terms of  the virtual work carried out by the stress oy when 
the crack tip moves from x -- a to x = a + 5a. Here we take into account that simultaneously with a, 
the dimensions of  the tip zone H a )  are also subject to variation. Referring the work done to one of  
the crack tips, we obtain 

a+~a+~.+~ a+~. 
GSa= ~ ¢~y(28v)dx=2 ~ ¢~ySudx+O(Sv 2) 

a a 

whence we arrive at the formula [11, 14] 

G = 2 I o ,  -~-a dx (3.2) 
a 

The right-hand side of (3.2) is superficially similar to the corresponding formula for the J- 
integral. However, the integrand contains ~v/~a rather than ~v/~x, as in the existing formula [5, 7]. 
For stresses c .  close to the yield point of the material, the difference between G and J may be fairly 
large [19]. 

The right-hand side of inequality (3.1) contains the generalized resistance force F, which depends 
on the measure of damage a tx  = a, i.e. on 
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lit ~ to [a (N), N] (3.3) 

Here the function to (x, N) is similar to the measure of damage of the Kachanov-Rabotnov continuum 
model [20]. We will use the threshold-power accumulation law for this measure. Treating N as a 
continuous parameter, we postulate the equation 

Oto 16oy -Atom 1 ~ ~ -  = ~, ~ ) (1 - to)-" (3.4) 

with the material parameters o,,, Aom, m and n. Here ~,0 is the stress, characterizing the resistance of 
the material to microdamage accumulation and Aath is the threshold value of this resistance; the exponent 
m > 0, n I> 0. If the range Aa**(b 0 of the applied stress is suftieiently small, we have Aay (x, N) < AOth 
at least along part of the length I x I ~> a. We must then take OtNON = 0 instead of (3.4). 

Note that the range Aoy (x, b 0 is defined as the difference between t.he values of o r (x, N), corres- 
ponding to the applied stresses o~ax, and the unloading stress a ,  ma~ - a ~  m. We will henceforth assume 
that, within each cycle, the material behaves as an ideal elasto-plastic material with a yield point s+(x) 
in the case of tension, and s-(x) for compression, and Young's modulus E for unloading. As a result, 
the dimensions ot the plastic zone vary during loading. Henceforth, we will draw a distinction between 
the dimensions. ~. for monotonic loading and the dimensions, kp for cyclic loading. Obviously .3 v ~< ~... In 
pamcular, for R = 0 and s = const for I x I ~> a we obtain that ~ = ~4. When s = s(x, N) the dimensions 
k e will be sought numerically for each cycle (or block of cycles) using (2.1), (2.4) and (2.5). 

We will take into account the effect of microdamage on the properties of the material as follows. 
First, we will assume that the generalized resistance force is a decreasing function of ¥, for example 

I" -- ~,(1 - ( ~  / ~ . ) "  ] (3.5) 

where ,/is the specific fracture work for the undamaged material, ~.  is a certain constant (for example, 
~ ,  = 1), while the constant et > 0, for example et = 1. Second, we will assume that the limit stress s(x) 
depends on the local value of to. Henceforth we will assume 

S=So[1-c.tof~], c.=const ,  13=const>0 (3.6) 

where s o is the limit stress for the undamaged material. Generally speaking, we draw a distinction between 
s~ and s~. The choice of formulae (3.5) and (3.6), as well as the right-hand side in (3.4), is obviously 
fairly arbitrary. In particular, in (3.5) and (3.6) it is easy to introduce the effect of cyclic hardening or 
a combination of hardening and softening. A typical relationship, which describes cyclic hardening and 
subsequent softening has the form F = ~1 + ~ 1 )  when 0 ~< ~ ~< ~1 and F = 7(1 + I]11) °q - ( ¥  - ¥ 1 )  a2 

when ¥1 ~< ¥ ~< 1. 
The calculation of fatigue-crack growth and a par~netfic analysis are based on the stability condition 

(3.1) combined with the equation of the damage accumulation (3.4) and formulae (3.2), (3.5) and (3.6). 
Since the functions aj, (x) and v(x) occurring in these formulae as well as the length of the cyclic plastic 
zone ~ in turn ate determined from (2.1), (2.4) and (2.8), further analysis can only be carried out 
numerically. Available software enables this calculation to be carried out. It includes modules for 
calculating the measure of damage and the stresses ahead of a crack (Eqs (2.1), (2.4), (2.5), (3.4), and 
(3.6)), the calculation of the generalized forces (formulae (3.2) and (3.5)), and also a module for checking 
condition (3.1), which defines the instant when the crack starts to grow and the balance of generalized 
forces as the crack front advances. By modifying individual modules one can replace Eqs (3.4)-(3.6) 
by other equations, and also carry out the necessary parametric analysis. The software was tested on a 
classical model of a thin plastic zone (with s = const), for which an exact analytic solution is available. 

4. We used the following basic data for the calculation: Young's modulus E = 200 GPa, the yield points and 
specific fracture work for the undamaged material s~ -- s~ = 500 MPa, 7 = 15 kJ/m 2, and the stresses characterizing 
the resistance of the material to microdamage accumulation were taken as 6~ = 5 GPa and A6th = 0.25 GPa. The 
exponents in (3.4)-(3.6) were taken to be as follows: m = 4, n = 0, ct = 1 and ~i = 4. In (3.5) we assumed that ¥. 
= 1 and c, = 0.5. Unless otherwise stated, the loading parameter was taken as A6th = 150 MPa for R = 0.5, and 
the initial size of the crack a0 = 1 ram. To illustrate the results we used the following dimensions: the stresses are 
in MPa, the crack length is in mm, the crack growth rate is in mm/cycle, and the range of the stress intensity factors 
is in MPa m rE. 
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In Fig. 2 we show the distribution of the ranges of the stresses Aay and the measure of microdamage ¢o in the 
incubation s~ge, i.e. from the beginning of loading to the instant when the crack starts. During this stage the stresses 
in the plastic zone fall, while the damaKe grows. The crack starts to grow when N. = 3305, while curves 1-3 in 
Fig. 2 are drawn with a step of AN = 10", beginning from N = 500 (curve 1). Curve 4 corresponds to No. On the 
curves one can clearly see the limits of the cyclic plastic zone, the reduction in the stresses and the growth of 
mierodamage in this zone as the time approaches the instant when the crack begins to grow. 
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In Fig. 3 we show the change in the size of the crack at the initial stage of its propagation. The inRial growth of 
the crack is accompanied by a jump (section AB). Section BC corresponds to the transient stage of crack growth, 
when the growth rate is an oscillating function of the number of cycles. The crack grows continuously, but its growth 
alternately accelerates and slows down due to a change in the nature of the microdamage distribution ahead of 
the front. Hence, along the initial part a(N) is a non-smooth function, while the crack growth rate da/dNis a strongly 
oscillating function of N. This can be seen both in Fig. 3(a) and (b), where we show the initial part of the diagram 
of crack growth, i.e. the relationship between the rate daMN and the range AK1 of the stress intensity factor Kx = 
o.(~a) Vz. Further crack growth (section CD) occurs with a monotonic increase in the rate. When AKx> 10 MPa m it2 
the growth rate (on a logarithmic scale) lies practically on a straight line. 

The distributions of Aov and (o, typical for the section CD, are shown in Fig. 4(a) and (b), respectively. Here 
N ~, 5 x 104 The raage o~ stresses Aoy varies monotonically within the tip zone, increasing from Ao ffi 800 MPa 

" . Y 

at x ffi a to Aoy = 1000 MPa at x = a + ~ .  In the elastic zone the range of stresses decreases monotonically, 
approaching Ao.  = 150 MPa as x -* a. The measure of  damage varies monotonically ahead of the crack front, 
leading to continuous advance of the crack. 

The effect of the loading level on crack growth is illustrated in Fig. 5. Curves 1, 2 and 3 in Fig. 5(a) are drawn 
for a range of applied stresses Ao.. = 150, 175 and 200 MPa. The form of the curves changes only slightly over the 
range of Ao .  considered. However, for large values of AO. the duration of  unsteady crack growth increases. The 
curves for the rate da/dN as a function of AK1 diverge strongly at the initial stage, and then approach a common 
straight line (on a logarithmic scale). In Fig. 5(b) we show averaged values of da/dN, and also the limits of  their 
variation. Details of the variation of the crack growth rate are omitted (they are similar to those shown in Fig. 3b). 

Two features of the pattern of crack growth should be noted. First, there is a considerable spread in the rates 
at the initial stage; the ranges of  variation of the rates corresponding to different loading levels overlap. Second, 
an excess of the averaged rates at the initial stage compared with the values which can be extrapolating the middle 
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section into the region of small AKI is observed. This effect was also found in simulation using the classical model 
of a thin plastic zone [12]. 

Note that in the numerical examples considered the critical value of the degree of fracture resistance for an 
undamaged material isKic = (TE) 1/2 ~ 55 MPa m 1oz. This is much greater than the value Kt max = AKz(1 + R) shown 
in Figs 3 and 5 and later. The large spread in the crack growth rate for relatively small AK1 and the anomalous 
behaviour of short cracks are well-known experimental facts [21]. This has been explained by the "crack closure" 
effect and related phenomena. It follows from the above analysis that the features of the behaviour of short cracks 
can also be explained by taking into account the accumulation of damage in the plastic zone. 

The above conclusion is also confirmed by an analysis of the effect of the initial crack length on the process of 
its tip advancement, which is illustrated in Fig. 6. Curves 1, 2 and 3 for the crack length and growth rate drawn for 
initial lengths of a 0 = 1, 1.25 and 1.5 mm, respectively. The calculation was carried out for a loading level of AtJ, 
= 150 MPa and the material characteristics employed above. Note that the initial dimensions of the crack vary 
over a very narrow range. Nevertheless, the spread in the crack growth rates at the initial stage is extremely large. 
For example, by changing the initial crack size by 0.25 mm one can obtain a change in da/dN by an order of magnitude 
over a small range of AK I. However, as in the previous case, all three curves for the growth rate after relaxation 
to the steady state lie on a single straight line on a logarithmic scale. 

Figure 7, which shows the effect of the degree of cyclic softening on the fatigue-crack growth, contains additional 
information. Figure 7(a) is drawn for the initial stage of the crack growth while Fig. 7(b) is drawn for the whole 
range of variation of the rate of advancement of the crack tip. The calculations were carried out for Ate. = 150 
MPa, R = 0.5, 13 = 4 and three values of the parameter c. in formula (3.6): c. = 0.8 (curve 1), c. = 0.5 (curve 2) 
and c. = 0 (curve 3). The last value corresponds to the case when there is no cyclic softening, i.e. s = So = const. 

This research was carried ou t  with financial  support  f rom the Russian Founda t ion  for Basic Research 
(93-013-16486). 
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